Categorías
Quantum

Mediciones

Con esta entrada puedo ganarme la enemistad de algún físico fanático. En cuanto alguno lea la frase «colapso de la función de onda» sufrirá un ataque de epilepsia. Esto tiene que ver con las interpretaciones filosóficas de la mecánica cuántica, de las que hay muchas. Por fortuna, no hay ambigüedad la forma de realizar cálculos. Y por suerte para nosotros, en Computación Cuántica tendremos que lidiar casi siempre con un único observable. Siento mucho inundarle con más contenido que el estrictamente necesario, pero mi teoría es que en conocimientos, más es siempre más.

Dos principios

En la entrada anterior presenté tres axiomas. Ahora nos toca ver dos principios adicionales.

  • La aplicación de operador observable a un sistema cuántico provoca un colapso del estado a uno de los vectores propios (eigenvectors) de dicho operador.
  • La probabilidad de que un vector propio concreto sea el elegido depende de la magnitud al cuadrado de su amplitud asociada en el estado cuántico anterior a la observación. Este principio se conoce como «regla de Born».

Estos dos principios se tratan por separado por estar asociados a un proceso físico diferente del de los axiomas. La visión del mundo (o Weltanschauung, porque me gusta el palabro alemán) que se infiere de los tres axiomas es muy diferente a la que surge de estos dos nuevos principios. En el mundo de los tres axiomas, el estado cuántico evoluciona de forma determinista y reversible. No hay nada probabilístico en la ecuación de Schrödinger. A este modelo se le conoce como «evolución unitaria», por razones que veremos más adelante.

En cambio, los dos nuevos principios corresponden al proceso conocido como medición. Se trata de un proceso irreversible y probabilístico, en el que se pierde buena parte de la información existente en la función de onda anterior a la medición.

La mayoría de los físicos creen (en el sentido de creer en los dioses del Olimpo o en Nyarlathotep) que el proceso de medición y la regla de Born podrían derivarse de los tres axiomas. Nadie ha podido demostrarlo, de momento. En el otro bando, hay quienes creen que hace falta ampliar la ecuación de Schrödinger, o que el colapso tiene que ver con discordancias en el espaciotiempo, y que hace falta una teoría cuántica de la gravitación para explicar esta parte. Personalmente, no me parece descabellado. Al fin y al cabo, la gravedad destruye información en los agujeros negros (nadie ha observado experimentalmente la radiación de Hawking). En cualquier caso, mi opinión sobre estos temas es la de un absoluto profano.

El estado como superposición

Vamos a ocuparnos del primer principio. Recordemos que, de acuerdo a los axiomas, un «observable» es un operador auto-adjunto que actúa sobre los vectores de un espacio vectorial complejo. Exigimos que sea auto-adjunto, además, para que sus valores propios sean números reales.

Para simplificar, usaré como ejemplo el sistema más simple: un ordenador cuántico con sólo 1 qubit. El estado cuántico, en este caso, es un vector complejo en $\mathbb{C}^2$. Es decir, el estado se describe mediante dos números complejos:
$$
\alpha\hat e_1 + \beta\hat e_2
$$La clave, en este punto, es averiguar qué son esos $\hat e_1$ y $\hat e_2$ que han aparecido de la nada. Son dos vectores unitarios (longitud igual a uno) que definen una «base» en el espacio vectorial. ¿Cuál base, en concreto? Necesitamos algo más de información para poder dar respuesta a esta pregunta…

La respuesta consiste en que este ordenador de un qubit debe ofrecer un «operador observable», cuya implementación exacta es cosa del hardware. Lo que nos importa es que ese operador va a definir implícitamente una base formada por sus vectores propios. ¿Cuántos vectores propios tiene un operador auto-adjunto en $\mathbb{C}^2$? Tiene dos, por supuesto: es un espacio de dos dimensiones, ¿no?. Podemos seguir llamándolos $\hat e_1$ y $\hat e_2$… o podemos ser más prácticos y llamarlos $\vert 0\rangle$ y $\vert 1\rangle$. Con esto, ya podemos afinar un poco más la definición del estado cuántico del qubit. Siempre podrá describirse como una combinación lineal de estos dos vectores o estados especiales:
$$
\alpha\vert 0\rangle + \beta\vert 1\rangle
$$La base formada por los vectores $\vert 0\rangle$ y $\vert 1\rangle$ se conoce como base computacional o, en inglés, computational basis. Al observable cuyo operador tiene esta base como vectores propios, voy a llamarlo, por motivos que desvelaremos a su debido tiempo, $M_z$.

La Regla de Born

Vamos a darle valores concretos a $\alpha$ y $\beta$. Supongamos que el estado del qubit es el siguiente:
$$
\vert 0\rangle + \vert 1\rangle
$$La regla de Born nos dice que, si aplicamos la medición $M_z$ a este estado, obtendremos como resultado el vector $\vert 0\rangle$ en la mitad de los experimentos, y $\vert 1\rangle$ en la otra mitad de las veces. Supongamos, por el contrario, que el estado es:
$$
3\vert 0\rangle + 4\vert 1\rangle
$$En este caso, obtendremos $\vert 0\rangle$ con una probabilidad de $\frac{9}{25}$, esto es, un 36% de los casos. Y obtendremos $\vert 1\rangle$ con una probabilidad de $\frac{16}{25}$, que es el 64%.

¿Y si el estado inicial es directamente $\vert 0\rangle$? Pues en este caso, siempre saldrá $\vert 0\rangle$ como resultado. En general, si el estado cuántico es éste:
$$
\alpha\vert 0\rangle + \beta\vert 1\rangle
$$la probabilidad de que obtengamos $\vert 0\rangle$ es
$$
\frac{\alpha^2}{\alpha^2+\beta^2}
$$y la probabilidad de que salga $\vert 1\rangle$ es la complementaria.

Normalización

Un médico no debe hacer daño, y un escritor técnico nunca debe confundir al lector. A quienes ya conocen algo de Mecánica Cuántica les extrañará que haya puesto el siguiente estado como ejemplo:
$$
\vert 0\rangle + \vert 1\rangle
$$¿Por qué? Pues porque los estados suelen representarse de manera que su longitud sea la unidad: $\vert\vert\psi\vert\vert =1$. Se trata de un convenio, simplemente. El estado anterior normalmente se escribe así:
$$
\frac{1}{\sqrt 2}\vert 0\rangle + \frac{1}{\sqrt 2}\vert 1\rangle
$$En general, como convenio se pide lo siguiente:
$$
\alpha\vert 0\rangle + \beta\vert 1\rangle\quad\alpha\alpha^* + \beta\beta^* = 1
$$Como $\alpha$ y $\beta$ son números complejos, hemos tenido que multiplicarlos por sus respectivos conjugados. La diferencia entre normalizar los estados y no normalizarlos consiste en que, si no los normalizamos, tendremos que hacer malabares con la norma del estado en algunas fórmulas. Por lo tanto, de ahora en adelante, el estado que representábamos como $3\vert 0\rangle + 4\vert 1\rangle$ lo escribiremos como $0.6\vert 0\rangle + 0.8\vert 1\rangle$ para evitar problemas.

En una exposición más rigurosa de la Mecánica Cuántica tendríamos que haber empezado diciendo que el estado cuántico se representa mediante un «rayo» en $\mathbb{C}^n$. O más oscuramente, que es un elemento de un espacio proyectivo de $\mathbb{C}^n$. Chino mandarín, vamos, pero ya sabemos qué es lo que quieren decir.

Categorías
Quantum

Estado cuántico

Este blog se llama Quantum Insights porque mi intención inicial era dedicarlo a la Computación Cuántica. Me he distraído un poco con los preliminares, pero es hora ya de saltar a la materia que nos interesa. No nos hará falta saber mucha Física para aprender, pero un poco no nos vendrá mal tampoco.

Mi plan para las próximas entradas es el siguiente: primero, voy a explicar qué es el «estado cuántico», a grandes rasgos. Segunda entrada: el proceso de medición. En la tercera entrada ya veremos, entonces, cómo se define un ordenador cuántico. Entiendo que, por mucho que simplifique, siempre hay temas que necesitarán aclaraciones. Utilice los comentarios ad libitum, y si lo cree necesario, envíeme un correo electrónico. Mi cuenta es mi nombre, Ian, más el dominio de este blog.

Tres axiomas

La primera mitad de la Mecánica Cuántica se explica con estos tres axiomas:

  • El estado de un sistema cuántico se describe mediante un vector en un espacio vectorial complejo $\cal H$, dotado de un producto interior hermitiano.
  • Los observables del sistema se corresponden con operadores lineales auto-adjuntos en $\cal H$.
  • La evolución en el tiempo del estado cuántico está determinada por la ecuación de Schrödinger.

Hay un montón de términos técnicos, y por ello vamos a dedicar varias secciones a cada axioma.

Espacios de Hilbert (I)

Lo primero es ver qué es un espacio vectorial complejo. Llevamos unas cuantas entradas hablando de vectores a secas, por lo que imagino que el concepto es más o menos intuitivo. Los vectores más populares son los vectores euclidianos: tres valores reales, como en $(1.2,\,2,\,-33)$. No obstante, los vectores que nos interesan para la Mecánica Cuántica tienen dos diferencias importantes:

  1. Cada componente de estos vectores va a ser un número complejo, en vez de un número real.
  2. En el espacio euclidiano hay tres dimensiones. El estado cuántico puede tener, dependiendo del sistema que se estudie, un número diferente de dimensiones. Puede ser un número finito o infinito de dimensiones. Y cuando hay infinitas dimensiones, puede tratarse de infinito numerable o infinito no numerable. Sí: manda…

No se asuste: los estados cuánticos que se manejan en Computación Cuántica son espacios finitos, y el número de dimensiones es una potencia de dos, como en $2^N$, donde $N$ es el número de qubits del sistema. Por ejemplo, dedicaremos algún tiempo a estudiar el sistema de 1 qubit, por ser el más sencillo posible. El estado de un qubit, por lo antes dicho, se puede representar como un vector de dos dimensiones complejas, como estos ejemplos:
$$
\eqalign{(0,&\,1)\cr
(0.7071 + 0.7071i,&\, 0.7071 – 0.7071i)}
$$Estos espacios vectoriales complejos, una vez que definimos un producto interior hermitiano (no lo hemos hecho todavía) se conocen como espacios de Hilbert, si tienen una propiedad adicional: que sean espacios métricos completos. Los espacios que se utilizan en computación cuántica tienen dimensiones finitas, y cumplen automáticamente con esta regla. De ahí, la $\cal H$ caligráfica que se menciona en los axiomas.

Producto interior hermitiano (I)

Dos vectores se pueden sumar y restar entre sí, y es fácil imaginar cómo se hace: componente a componente. También se puede multiplicar un vector por un escalar, casi como con los vectores euclidianos. La diferencia está en que el escalar ahora es un número complejo. Esta multiplicación, naturalmente, también se calcula componente a componente. Por ejemplo:
$$\eqalign{
(0,\, 1)+(i,\, 0)=&(i,\, 1)\cr
i\cdot(i,\, 1)=&(-1,\, i)}
$$Los vectores euclidianos tienen una operación de multiplicación escalar entre vectores, que recibe dos vectores y devuelve un número real. Cuando el espacio vectorial es complejo, sin embargo, esta operación se complica. El problema está en cómo se define la longitud de un vector. En un espacio euclidiano, acostumbramos a calcular el producto interior del vector consigo mismo, y aplicarle entonces la raíz cuadrada:
$$
\vert\vert v \vert\vert = \sqrt{v \cdot v}
$$Si queremos que las longitudes de los vectores complejos sean reales y positivas, entonces tenemos que ajustar la definición del producto interior para que, al menos, el producto de un vector consigo mismo sea no solamente real, sino además positivo. La generalización necesaria es sencilla. Supongamos que tenemos un par de vectores, $x$ e $y$, con componentes reales. En este caso, el producto interior se define clásicamente así:
$$
\eqalign{
x =& [x_1,x_2,x_3\cdots x_n]\cr
y =& [y_1,y_2,y_3\cdots y_n]\cr
x \cdot y =& \sum_{i=1}^n{x_i y_i}
}$$Estos son los productos escalares que hemos estado calculando a gogó en entradas anteriores.

Ahora supongamos que los componentes de estos vectores son complejos. La conjugada de un número complejo se define como un segundo número complejo con la misma parte real y la negación de la parte imaginaria del número original:
$$
(a + b i)^* = a – b i
$$El producto interior de dos vectores con componentes complejos es, entonces:
$$
x \cdot y = \sum_{i=1}^n{x_i^* y_i}
$$En el caso de los vectores reales, el producto interior es simétrico. Esto es, $x \cdot y = y \cdot x$. Pero para vectores complejos, la propiedad que se cumple es la siguiente:
$$
x \cdot y = (y \cdot x)^*
$$La igualdad anterior es fácil de demostrar si nos vamos a la definición de producto interior en espacios complejos. Lo que nos importa ahora es lo que ocurre cuando se toma el producto interior de un vector complejo consigo mismo:
$$
x \cdot x = (x \cdot x)^*
$$Esto significa que el valor del producto interior de un vector consigo mismo es, a la vez, igual a su valor conjugado. Pero esto sólo puede ocurrir cuando el valor es real, o sea, cuando la parte imaginaria es cero. Podemos incluso ir más lejos, y demostrar que el producto interior complejo que acabamos de definir es siempre no negativo cuando se multiplica cualquier vector consigo mismo. Por lo tanto, podemos seguir definiendo la longitud de un vector en un espacio complejo como antes:
$$
\vert\vert x \vert\vert = \sqrt{x \cdot x}
$$

La notación de Dirac (I)

Hagamos una pequeña pausa: resulta que para calcular un producto escalar, necesitamos una versión modificada de uno de los vectores… y no del otro. Pero el operador que hemos utilizado para el producto interior (el punto) «sugiere» que se trata de un operador simétrico (y no lo es). A Paul Adrien Maurice Dirac se le ocurrió una idea: digamos que a todo espacio vectorial $\mathbb{C}^n$ le corresponde automáticamente un espacio vectorial dual, y que entre ambos espacios hay una transformación biunívoca. El dual de un vector es un vector con los mismos componentes, pero conjugados. A los elementos del espacio vectorial original los llamaremos «kets» y los escribiremos de esta manera:
$$
\vert \psi \rangle
$$A los vectores del espacio dual los llamaremos «bras», y el dual del «ket» anterior se representa así:
$$
\langle \psi \vert
$$Lo que haremos a continuación es definir el producto interior como una operación que siempre toma un primer operando de tipo «bra» y un segundo operando de tipo «ket». Si yo quiero calcular el producto interior de $\vert \phi \rangle$ con $\vert\psi \rangle$, tengo que convertir antes el primer operando en un «bra», y sólo entonces puedo obtener el producto interior:
$$
\langle \phi \vert \psi \rangle
$$La expresión anterior es un número complejo, un escalar, y se cumple la antisimetría conjugada:
$$
\langle \phi \vert \psi \rangle = \langle \psi \vert \phi \rangle ^*
$$Naturalmente, la longitud de un vector, no importa si es bra o ket, puede definirse así:
$$
\vert\vert \psi \vert\vert = \sqrt{\langle\psi\vert\psi\rangle}
$$Siendo rigurosos, esto es un poco de abuso de notación. Pero no nos supondrá problema alguno.

Observables (II)

Toca explicar qué narices es el operador lineal auto-adjunto del segundo axioma. No es complicado: si el espacio vectorial es un espacio de dimensiones finitas, como en Computación Cuántica, un operador es simplemente una matriz con componentes complejos. Si tuviésemos que tratar con espacios de infinitas dimensiones, tendríamos que hilar un poco más fino, pero no es necesario en nuestro caso.

¿Recuerda que nuestro producto interior no es simétrico? Este detalle provoca que, en general, aplicar un operador al bra y al ket tengan resultados diferentes. En términos generales:
$$
\langle Ax\vert y\rangle\neq\langle x\vert Ay\rangle
$$Si queremos mover el operador $A$ al otro lado de la barra central, tenemos que transformar el operador $A$ en su adjunto $A^{*}$:
$$
\langle Ax\vert y\rangle = \langle x\vert A^{*}y\rangle
$$A nivel de celdas, la adjunta de una matriz es una matriz transpuesta creada a partir de los valores conjugados de sus componentes. Por ejemplo:
$$
\pmatrix{1&-2-i\cr 1+i&i}^* = \pmatrix{1&1-i\cr -2+i&-i}
$$Un operador auto-adjunto, simplemente, es un operador que no cambia al calcular su adjunto: $A = A^*$. Por ejemplo:
$$
\pmatrix{0&-i\cr i&0}^* = \pmatrix{0&-i\cr i&0}
$$Por lo tanto, si volvemos al producto interior, si el operador $A$ es auto-adjunto, se cumple que:
$$
\langle Ax\vert y\rangle = \langle x\vert Ay\rangle
$$¿Qué importancia tienen los operadores auto-adjuntos? Pues que los valores propios, o eigenvalues, de un operador auto-adjunto en un espacio vectorial complejo, son siempre valores reales. Este es el dato técnico. Pasemos a la interpretación física:

  1. Un «observable» de un sistema cuántico es simplemente una propiedad física del sistema que podemos medir. Ejemplos: la posición de una partícula, la velocidad de una partícula, la orientación del espín respecto a una dirección predeterminada, etc, etc.
  2. Nosotros no vamos a medir la velocidad de una partícula en Computación Cuántica. Lo advierto para la salud mental de todos nosotros. El «observable» que vamos a manejar prácticamente siempre en un ordenador cuántico es el estado binario de sus qubits. Esto lo veremos con más detalles en el momento adecuado.
  3. Como bien dice el axioma, cada «observable» se asocia a un operador auto-adjunto.
  4. El valor del observable se obtiene mediante un proceso de «medición», que veremos en la próxima entrada.
  5. Matemáticamente, la medición consiste en escoger probabilísticamente uno de los valores propios del operador asociado al observable.
  6. Como las cantidades físicas suelen ser magnitudes reales (las anoréxicas tienen una masa compleja, con una parte real y otra imaginaria), tenemos que exigir que los operadores observables tengan esta conveniente propiedad de ser auto-adjuntos.

La ecuación de Schrödinger (III)

Ya llegamos al tercer axioma, que es donde se menciona por primera vez la ecuación de Schrödinger:$$
i\hbar{d \over dt}\vert \psi(t) \rangle=H\vert \psi(t) \rangle
$$Tengo una buena noticia: ¡no necesitaremos resolver la ecuación de Schrödinger! Al menos, mientras no tengamos que enredarnos con el hardware a muy bajo nivel, claro. Sin embargo, menciono la dichosa ecuación porque conocerla nos va a ayudar a comprender mejor las reglas de la Computación Cuántica.

A la derecha de la igualdad tenemos la derivada temporal de la función de onda. Y a la izquierda, el operador de Hamilton del sistema. En pocas palabras: se trata de una ecuación lineal. Si $\vert \psi_0\rangle$ es una solución de la ecuación, y también lo es $\vert \psi_1\rangle$, entonces cualquier combinación
$$\alpha\vert \psi_0\rangle + \beta\vert \psi_1\rangle
$$donde $\alpha$ y $\beta$ son números reales, vale también como solución.

En la próxima entrada de este blog, trataremos el modelo de medición sobre un sistema cuántico.