Categorías
Quantum

Cuatro gatos

Vamos a probar fortuna ahora con un circuito mucho más interesante, que a la larga utilizaremos con cierta frecuencia. Este es el circuito:

Las compuertas $H$, naturalmente, corresponden a transformadas de Hadamard aplicadas a qubits individuales.

SuperHadamard

A modo de recordatorio, esta es la definición de la matriz de Hadamard:

$$H = \frac{1}{\sqrt2} \pmatrix{
1&1\cr 1&-1
}$$El coeficiente $\frac{1}{\sqrt2}$ se incluye para que el determinante de la matriz sea la unidad.

Cuando la transformada de Hadamard se aplica a un qubit que está en el estado inicial $\vert0\rangle$, lo lleva al estado $\vert+\rangle$ de la base de Hadamard, que se expresa en la base computacional como $\frac{1}{\sqrt2}(\vert0\rangle + \vert1\rangle)$. Este es un estado superpuesto, un gato de Schrödinger, que cuando se mide, va a alternar entre ceros y unos con la misma probabilidad. Si nos ponemos solemnes, podríamos decir que acabamos de implementar un generador aleatorio de valores binarios.

¿Qué pasa si tengo dos qubits y le aplico Hadamard a cada uno de ellos? Ya sabemos que para tener una respuesta exacta tenemos que multiplicar tensorialmente dos matrices de Hadamard. Este es el cálculo:

$$\eqalign{
H \otimes H &= \frac{1}{2} \pmatrix{1&1\cr 1&-1} \otimes \pmatrix{1&1\cr 1&-1}\cr
&= \frac{1}{2}\pmatrix{1&1&1&1\cr 1&-1&1&-1\cr 1&1&-1&-1\cr 1&-1&-1&1 }
}$$Ahora queremos saber qué pasa si aplicamos esta matriz al estado inicial del circuito, $\vert00\rangle$:

$$(H\otimes H)\vert00\rangle = \frac{1}{2}\pmatrix{1&1&1&1\cr 1&-1&1&-1\cr 1&1&-1&-1\cr 1&-1&-1&1 } \pmatrix{1\cr0\cr0\cr0} = \frac{1}{2} \pmatrix{1\cr1\cr1\cr1}
$$Vamos a entender mejor el resultado si lo representamos en notación de Dirac:
$$\frac{1}{2}\vert0\rangle + \frac{1}{2}\vert1\rangle + \frac{1}{2}\vert2\rangle + \frac{1}{2}\vert3\rangle
$$Esta es una superposición uniforme de los cuatro vectores de la base de dos qubits. Es decir: un gato de Schrödinger simultáneamente en cuatro estados. También podemos interpretarlo como una superposición uniforme de todos los números enteros del cero al tres.

Si aplicamos una medición a este estado, el resultado puede ser cualquiera de los números del cero al tres, con la misma probabilidad para cada uno de ellos (un cuarto). De vuelta a la solemnidad: hemos programado un generador aleatorio que escupe números del $0$ al $3$.

Los goces de la linealidad

Imaginemos que hemos diseñado un circuito multiqubits, que recibe un número entero de entrada y que hace algún cálculo mágico y genera un valor entero muy interesante por el otro extremo. No voy a complicar la fiesta ahora recordando que ese circuito debe implementar una transformación unitaria. Si lo tuviésemos en cuenta, tendríamos que introducir qubits adicionales para mantener la reversibilidad del circuito. Pero vamos a olvidarnos ahora de ese problema, y aceptemos que tenemos un algoritmo mágico que transforma un número en otro número más interesante.

Supongamos ahora que, en vez de pasarle un número al algoritmo, le pasamos de golpe una superposición uniforme de todos los números representables en el número de qubits de los que disponemos. ¿Qué calculará el algoritmo? Como el «algoritmo» es una matriz, es decir, una transformación lineal, lo que obtendremos es una superposición uniforme de todos los resultados. Es como si hubiésemos aplicado el algoritmo en paralelo a todos los números enteros que podemos representar en nuestro ordenador:

$$A\times \sum_i { \alpha_i \hat{e}_i } = \sum_i { \alpha_i (A\times \hat{e}_i) }
$$Esta propiedad se conoce como paralelismo cuántico, y no es tan útil como parece a primera vista. No lo es porque, cuando midamos, colapsaremos el estado en un único vector propio, y perderemos toda esa información. De todos modos, pronto veremos cómo sacar partido de esta situación.

Algebra lineal, nivel Dios

Termino esta entrada con una nota técnica sobre álgebra lineal, que nos va a ser muy útil para obtener el grado de ninja. A todos nos han contado, en un momento u otro de nuestras vidas, que el mundo está lleno de vectores que pastan por los prados y de matrices cuya obsesión en la vida es transformar cada vector que se le ponga a tiro:

$$Ax$$Vamos a plantearnos esta relación desde otro punto de vista. ¿Y si realmente es el vector quien está actuando sobre la matriz para generar otro vector? Podemos hacerlo, siempre que consideremos que una matriz es una colección de columnas, en vez de una colección de filas, que es la forma más habitual de verlas. Observe cómo un vector parasita a una matriz y genera un vector combinando linealmente las columnas de la misma:

$$\pmatrix{a_1&b_1&c_1\cr a_2&b_2&c_2\cr a_3&b_3&c_3} \pmatrix{x_1\cr x_2\cr x_3} = x_1\pmatrix{a_1\cr a_2\cr a_3} + x_2\pmatrix{b_1\cr b_2\cr b_3} + x_3\pmatrix{c_1\cr c_2\cr c_3}
$$Esta intuición nos sirve, si estamos implementando una librería de matrices con aceleración por hardware, para representar las matrices como vectores de columnas. Lo he probado en C++, usando funciones intrínsecas y, efectivamente, es más eficiente implementar la multiplicación de matrices por vectores usando SIMD como una combinación lineal de las columnas de la matriz. De hecho, el convenio de FORTRAN siempre ha sido almacenar las matrices por columnas, no por filas.

Pero no es esto lo que quiero mostrarle exactamente. Imaginemos que el vector $x$ pertenece a la base. En ese caso, uno de sus componentes será un $1$, y el resto, $0$. Veamos cómo transformaría nuestra matriz de Hadamard de $4\times4$ el estado $\vert10\rangle$:

$$(H\otimes H)\vert10\rangle = \frac{1}{2}\pmatrix{1&1&1&1\cr 1&-1&1&-1\cr 1&1&-1&-1\cr 1&-1&-1&1 } \pmatrix{0\cr0\cr1\cr0} = \frac{1}{2} \pmatrix{1\cr1\cr-1\cr-1}
$$Si observamos bien, vemos que lo que ha hecho el vector es seleccionar directamente la tercera columna de la matriz. ¿Por qué? Pues porque $\vert10\rangle$ es el tercer vector de la base: dos ceros, un uno y otro cero. Una combinación lineal de las columnas, en este caso, va directamente a por la tercera columna.

Esto tiene una segunda consecuencia: ya hemos visto que en un ordenador cuántico, el vector de estado siempre se inicializa con ceros: $\vert000\cdots0\rangle$. Este es el primer vector de la base computacional: un $1$ en el primer componente, seguido de un montón de ceros. ¿Qué le va a hacer este astuto vector a una inocente matriz? ¡Pues seleccionar la primera columna!

Esto es un truco muy útil. Si tenemos una matriz de $2^N\times2^N$ que representa a todo un circuito, en realidad sólo necesitamos las $2^N$ celdas de la primera columna, porque sabemos a ciencia cierta cómo funciona la inicialización del ordenador cuántico.

Categorías
Quantum

Entrelazamiento

Son dos los fenómenos que hacen de la Mecánica Cuántica una teoría extraña: la superposición y el entrelazamiento. En ambos casos, la explicación más sencilla consiste en mirar las matemáticas.

Superposición

De los dos fenómenos, el más fácil de entender es la superposición, porque es una consecuencia de la linealidad de la ecuación de Schrödinger. Si un sistema puede estar en el estado $\vert\psi\rangle$ y en el estado $\vert\phi\rangle$, teóricamente puede estar también en cualquier estado intermedio $\alpha\vert\psi\rangle + \beta\vert\phi\rangle$. Traducido al mundo de los ordenadores cuánticos: un qubit no sólo puede estar en el estado que nosotros interpretaremos como $0$ y en el estado $1$, sino que puede estar, aunque no lo «veamos» directamente, en cualquier estado situado entre esos dos valores. Por ejemplo, si le aplicamos la transformación de Hadamard a un qubit que está en el estado inicial $\vert0\rangle$, obtenemos el estado mixto $\frac{1}{\sqrt{2}}(\vert0\rangle + \vert1\rangle)$.

Si estamos, por el contrario, en un sistema de $N$ qubits, podemos aplicar una transformada de Hadamard a cada uno de los qubits, y obtendremos una superposición de todos los enteros representables en esos qubits (esto lo veremos en breve). De manera que, si tengo $16$ qubits, puedo tener todos los números del $0$ al $65.535$ representados al mismo tiempo en esos registros. Lo mejor de todo: si le aplico una transformación unitaria a esos $16$ qubits, voy a estar transformando al mismo tiempo los $65.536$ valores posibles, gracias a la linealidad de estas transformaciones. Todo en su momento…

No obstante, lo que estoy diciendo es que matemáticamente es fácil comprender la superposición; no que sea fácil darle un sentido físico a la misma. La superposición es el origen de la famosa paradoja del Gato de Schrödinger, que estaba tanto vivo como muerto hasta el momento en que decidíamos realizar una medición.

Graduum libertatis

Para entender el problema del entrelazamiento, tenemos que comprender cómo funcionan los grados de libertad en un sistema cuántico. Imaginemos una partícula puntual moviéndose dentro de un mundo clásico en tres dimensiones. Un físico describiría la partícula mediante dos vectores: la posición y el impulso de la misma, es decir, la velocidad multiplicada por la masa. Seis componentes.

Ahora supongamos que nuestro universo tiene dos partículas. El físico clásico utilizaría entonces cuatro vectores: dos por cada partícula. En total, doce componentes. Lo que hemos hecho es concatenar dos espacios vectoriales de seis dimensiones. El mundo clásico es así de «sencillo».

$$\mathbb{R}^6 \oplus \mathbb{R}^6 = \mathbb{R}^{12}$$

Pero eso no es lo que hemos hecho al pasar de uno a dos qubits… o mejor, a tres qubits, para evitar confusiones. El estado cuántico de un qubit es $\mathbb{C}^2$, o un espacio proyectivo dentro de éste, si nos ponemos exquisitos. Sin embargo, hemos visto que el estado de dos qubits es $\mathbb{C}^4$, y el de tres qubits, $\mathbb{C}^8$. Aquí no estamos usando la concatenación de espacios vectoriales, sino el (¡ta-dah!) producto tensorial de estos espacios:

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^8$$

Es hora de ponernos serios y explicar qué es eso del…

Producto tensorial de espacios

El producto tensorial de dos espacios vectoriales es un tontería, créame. Supongamos que tenemos un espacio vectorial arbitrario (no necesariamente cuántico) de dimensión $n_1$, con una correspondiente base formada por $n$ vectores, a los que vamos a llamar $e_1, e_2 \cdots e_{n1}$. Ahora vamos a elegir un segundo espacio vectorial… qué narices… voy a multiplicar el espacio consigo mismo, para no tener que inventarme una segunda base. El espacio original se llamaba (se me había olvidado), $V$. No es muy original, pero nos valdrá. Y queremos ver cómo se define el espacio $V \otimes V$.

La idea es definir la base del nuevo espacio como todos los pares posibles de vectores $e_i \otimes e_j$, tal que:

$$i \neq j \rightarrow e_i \otimes e_j \neq e_j \otimes e_i$$

Si el espacio original tenía $n_1$ dimensiones, el espacio producto tiene $n_1 \times n_1$ dimensiones o componentes. Es exactamente lo mismo que vimos en la entrada anterior, pero ahora le ponemos un nombre bonito y una definición más o menos formal.

Nuestro espacio de un qubit tenía dos vectores en la base: $\vert0\rangle$ y $\vert1\rangle$. Por lo tanto, la base de un espacio de dos qubits es la siguiente:

$$\eqalign{
\vert0\rangle \otimes \vert0\rangle &\equiv \vert0\rangle\vert0\rangle \equiv \vert00\rangle \cr
\vert0\rangle \otimes \vert1\rangle &\equiv \vert0\rangle\vert1\rangle \equiv \vert01\rangle \cr
\vert1\rangle \otimes \vert0\rangle &\equiv \vert1\rangle\vert0\rangle \equiv \vert10\rangle \cr
\vert1\rangle \otimes \vert1\rangle &\equiv \vert1\rangle\vert1\rangle \equiv \vert11\rangle}$$

Es decir: lo mismo que ocurría en la entrada anterior, pero ahora tenemos otras dos maneras equivalentes de escribir los vectores de la base.

Toda esta pedantería formal, aclaro, es necesaria para lo que viene a continuación.

Producto tensorial de vectores

Al definir el producto tensorial de dos «espacios» vectoriales, implícitamente definimos también un producto tensorial entre vectores de las bases. Podemos definir un producto tensorial entre «vectores», en vez de espacios, si complementamos el producto tensorial de las bases con el requisito adicional de linealidad. Es decir:

$$\displaylines{(a\vert\phi\rangle + b\vert\psi\rangle) \otimes (c\vert\phi\rangle + d\vert\psi\rangle) \equiv\cr
\quad ac\vert\phi\rangle\vert\phi\rangle + ad\vert\phi\rangle\vert\psi\rangle + bc\vert\psi\rangle\vert\phi\rangle + bd\vert\psi\rangle\vert\psi\rangle}
$$Recuerde que $\vert\phi\rangle\vert\psi\rangle$ es simplemente una abreviatura de $\vert\phi\rangle\otimes\vert\psi\rangle$. Por poner un ejemplo, si multiplicamos uno de los vectores de la base computacional por uno de la base de Hadamard, obtendríamos:

$$\vert0\rangle \otimes \frac{1}{\sqrt 2}(\vert0\rangle + \vert1\rangle) =\frac{1}{\sqrt 2}(\vert00\rangle + \vert01\rangle)
$$Esta operación, en particular, nos permite obtener un vector combinado en el espacio de dos qubits a partir de dos estados independientes en el espacio de un solo qubit.

Ahora sí: entrelazamiento

Supongamos que estamos trabajando con tres qubits:

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^8$$

¿Cuántos números complejos, a bote pronto, necesitamos para representar un estado de este espacio? Si ignoramos la existencia de la equivalencia de fase y el convenio de normalización, necesitaremos ocho números complejos. Si tenemos en cuenta que el espacio de estados es realmente un estado proyectivo, en realidad necesitamos siete números complejos.

Podemos definir algunos estados en $\mathbb{C}^8$ componiendo tensorialmente estados independientes de un qubit. La gran pregunta que tenemos que hacernos es: ¿nos basta esta composición de vectores independientes para generar todos los elementos de $\mathbb{C}^8$? La respuesta es un rotundo no.

Un estado de un qubit se representa mediante dos valores reales o, alternativamente, un valor complejo. Incluso si ignoramos las equivalencias de fase y la normalización, hay sólo dos complejos en cada qubit. Tres qubits, explicados independientemente, nos dan un total bruto de seis valores complejos, que en neto son realmente tres complejos. Ni de broma alcanzamos a cubrir todas las descripciones basadas en siete números complejos que hacen falta para tres qubits. Lo podemos enmarcar en un cuadro y colgarlo en la pared de la oficina:

Hay más estados en un sistema de $N$ qubits que los que se pueden describir especificando estados independientes para cada qubit.

He empezado con el caso de los tres qubits para evitar confusión debida a que $2^2=2+2$. Pero cuando hay dos qubits ocurre lo mismo: tratados independientemente, necesitamos cuatro valores reales, o dos complejos. Tratados en conjunto, necesitamos tres complejos o seis reales.

Si este razonamiento top-down no le convence, probemos uno bottom-up. Consideremos este estado de dos qubits:

$$\frac{1}{\sqrt 2}(\vert00\rangle+\vert11\rangle)$$Le reto a encontrar dos estados de un qubit que, multiplicados tensorialmente, den lugar a este estado de dos qubits. Veamos la definición de producto tensorial de vectores:

$$\displaylines{(a\vert0\rangle + b\vert1\rangle) \otimes (c\vert0\rangle + d\vert1\rangle) \equiv\cr
\quad ac\vert00\rangle + ad\vert01\rangle + bc\vert10\rangle + bd\vert11\rangle}
$$Si queremos que se anulen los estados $01$ y $10$, necesitamos que $ad=bc=0$. Pero cualquier combinación que consiga esto, también conseguirá que se anulen los otros dos términos. La conclusión: no podemos explicar este estado descomponiéndolo en qubits independientes.

Medición entrelazada

¿Qué ocurre si realizamos una medición sobre un estado entrelazado como $\frac{1}{\sqrt 2}(\vert00\rangle+\vert11\rangle)$? Tenemos una combinación lineal de dos de los cuatro vectores propios, o eigenvectors, del espacio de estados. Por lo tanto, la medición no será determinista. Podemos obtener tanto el estado $\vert00\rangle$ como $\vert11\rangle$, y la probabilidad de obtener cualquiera de ellos es la misma.

Lo interesante es que, si obtenemos un $1$ en el primer qubit, no necesitamos mirar el contenido del segundo qubit: por fuerza, tiene que ser otro $1$. Lo mismo ocurre si recibimos un $0$ en uno de los qubits: el otro tendrá el mismo valor. Si estamos pensando en un ordenador cuántico, en el que los qubits están muy cercanos físicamente, esto puede que no nos sorprenda. Pero nadie ha dicho que los qubits tengan que estar uno al lado del otro. Uno de ellos puede estar en la Tierra y el otro en el planeta Raticulín.

Esta es una variante más o menos abstracta de la famosa paradoja de Einstein-Podolsky-Rosen, o paradoja EPR.

Dependencia de la base

¿Hay algo intrínseco en un estado cuántico dado que nos permita asegurar que es un estado superpuesto o entrelazado? Resulta que no: tanto la superposición como el entrelazamiento son fenómenos que dependen de la elección de una base. Por ejemplo, el estado $\frac{1}{\sqrt 2}(\vert00\rangle+\vert11\rangle)$ es un estado entrelazado para mediciones en la base computacional. Pero si vamos a realizar la medición en la llamada base de Bell, para sistemas de dos qubits, el estado anterior es un «estado puro». El truco está en que la base de Bell se define de esta manera:

$$\eqalign{
\vert\Phi^{+}\rangle =& \frac{1}{\sqrt 2}(\vert00\rangle+\vert11\rangle) \cr
\vert\Phi^{-}\rangle =& \frac{1}{\sqrt 2}(\vert00\rangle-\vert11\rangle) \cr
\vert\Psi^{+}\rangle =& \frac{1}{\sqrt 2}(\vert01\rangle+\vert10\rangle) \cr
\vert\Psi^{-}\rangle =& \frac{1}{\sqrt 2}(\vert01\rangle-\vert10\rangle)
}$$No obstante, en la base de Bell también habrá estados entrelazados. En realidad, volveremos a tener más estados entrelazados que estados descomponibles.